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SUMMARY 

A method for calculating in detail the hover 

performance of a circulation control rotor is described. 

Hover results for a typical high speed helicopter config- 

uration are presented. The method includes such detailed 

effects as non-uniform inflow, internal ducting losses and 

experimental airfoil data modified for compressibility 

effects. The calculations were performed on an untwisted, 

constant chord blade with varying section properties. It 

is demonstrated that hover Figures of Merit on the order 

of 0.80 are obtainable with this rotor system at thrust 

coefficients of 0.020. An optimum collective pitch angle 

is determined for each thrust coefficient. A favorable 

effect of compressibility on Figure of Merit up to a tip 

Mach number of 0.7 is shown. The rotor achieves near uniform 

inflow at its optimum collective pitch angle. It is demon- 

strated that very good hover efficiency may be obtained with 

a circulation control rotor without incurring the usual solid- 

ity and twist design compromises for forward flight. 
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SYMBOLS 

Area, ft8 

Chord, ft 

Section drag coefficient 

Section lift coefficient 

Power coefficient 

Specific heat at constant pressure, Btu/lb - deg F 

Thrust coefficient, T/pVaS 

Specific heat at constant volume, Btu/lb - deg F 
m 

Momentum coefficient, m~4 ' q A 

Hydraulic diameter, ft 

Friction coefficient 

Lift compressibility correlation factor 

Figure of Merit 

Acceleration due to gravity, 32.17 ft/seca 

Mass flow rate, slugs/sec 

Mach number 

Number of blades 

Power, ft-lb/sec 

Compressor exit pressure, lb/ft3 

Pressure, lb/fta 

Dynamic pressure, \  pV3 

Local radius, ft 

Heat recovery factor 



c 

p Density, lb-sec3/ft* 

Q 

HC Rotor solidity» ~% 
TO 

Rotational velocity vector, rad/sec 

T| Compressor efficiency (assumed 0.8) 

0. Induced angle, deg 

vi 
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n Radius, ft 

K Gas constant, ft/°R 

s Dummy integration variable 

5 Rotor disc area, ft2 

T Temperature, deg R 

t/C Section thickness - chord ratio 

T/S Disc loading, lb/ft2 

T/W Thrust - horsepower ratio 

V Velocity, ft/sec 

W Slot height, ft 

w/c Slot height - chord rtstio 

x Dimensionless radius, r/R 

X Drag of internal obstruction 

GREEK SYMBOLS 

cr Section angle of attack, deg 

g Blade twist, deg 

6 Section camber 

Y Ratio of specific heats, (l.k) 1 

6. Collective pitch, deg 
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Subscripts 

AIM Atmospheric conditions 

C Compressor 

COR Coriolis or pumping 

d Duct 

I Induced 

j Jet 

P Profile 

TE Trailing edge 

T Total 

— Average or mean quantities 

0 Total conditions of flow 
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INTRODUCTION 

This paper examine* the hover performance of a four-bladed high 

speed rotor of constant chord, zero twist, and varying sectional proper- 

ties. Although it had been determined previously (Reference 1) that an 

ideal Circulation Control (CC) rotor could generate Figures of Merit 

approaching 0.90, it was not known what performance degradation would he 

incurred with a more practical configuration. In particular, the effect 

of tip Mach number, collective pitch, zero twist, and slot height varia- 

tion were unknown so that the present investigation was needed. 

The theoretical and experimental performance of blown rotor systems 

such as the blown flap, jet flap and circulation control have been under 

investigation for many years (References 2 thru 7). These systems generally 

enhanced the aerodynamic capabilities of the helicopter in such areas as 

speed, propulsive force, lift capability, stability and control, and 

vibratory stress control. However, almost without exception the power 

requirements to achieve these improvements were excessive so that the 

overall vehicle performance was marginal. 

Recently a new generation of circulation control airfoils has been 

developed (References 8 to 21). These airfoils exhibit greatly improved 

aerodynamic efficiency at higher lift coefficients so that the rotor 

efficiency is similarly Improved. Although the full performance potential 

of this new rotor system has yet to be established, present computations 

(Reference 12) indicate nominally a factor of two increases in cruise 

speed and efficiency over conventional rotors. 

The extension to higher cruise car • )ility of any V/STOL is in 

direct conflict with good hover efficiency. In general a compromise of 

blade twisf, solidity, and section properties is necessitated to afford 

an equitable tradeoff. The circulation control rotor essentially circum- 

vents the hover-cruise compromise by efficiently controlling blade lift 

distribution independent of twist (angle of attack), and solidity (chord). 

By minimizing the solidity and completely eliminating the twist, a rotor- 

borne speed potential of approximately 1+00 knots is possible at rotor 

lift to equivalent drag rotors on the order of 20.0 (Reference 12). 
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The origiral hover methodology described in Reference 8, has 

undergone several refinements principally in the area of section aero- 

dynamics, induced velocity and internal flow calculations. The new 

analysis will therefore he described in some detail before discussing 

the calculation results. 

HOVER METHODOLOGY 

Hover performance for a selected thrust is computed by a series 

of successive interations on the hub plenum pressure, internal duct 

losses and the induced velocity. Figure 1 shows a logic diagram of the 

computer program. 

The program inputs include the rotor geometry and operating condi- 

tions. The Lock-Goldstein vortex method is usei to calculate the inflow 

field. A one-dimensional compressible flow analysis computes the internal 

blade duct pressure and temperature variation for a given compressor pres- 

sure ratio. The local radial variation of momentum coefficient is computed 

from the duct flow variables and the specified slot height distribution. 

Detailed airfoil section characteristics are employed to calculate the 

elemental forces and moments at each radial station. Finally these variables 

are integrated to yield rotor thrust and power. If the thrust is not suffi- 

cient the compressor pressure ratio is increased until the specified level 

is reached. The induced velocity is iterated upon within this loop. 

The following sections discuss the performance computations in more 

detail. 

TOTAL POWER COMPUTATION 

The power required for a circulation controlled rotor consists of 

four components: 

PT * PI + PCOR + PC + Pp <l> 

vhere P is the induced power 

P  is the coriolis or pumping power 

P  is the compressor power (including duct losses) 

P  is the profile power 

■■■■ 
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The hovering efficiency or Figure of Merit is given in terms 

of the ratio of the minimum theoretical induced pover to the total power 

required by the rotor. 

FM = 
min 0.707 Cn 

3/2 

(2) 

This parameter may be used to compare with other rotors in hover. Each 

of the power terms will be discussed in the following sections. 

INDUCED POWER 

The method of Lock-Goldstein is employed for the calculation of 

the induced velocity field and the induced power (Reference 22). This 

is a modified vortex theory which assumes a noncontracting wake of dis- 

tributed vorticity from a specified number of blades having an arbitrary 

span loading distribution. It is highly suitable for performance calcula- 

tion as it requires minimal computer time while eliminating the empirical 

"tip correction factors" of other theories. Although not the ultimate 

vortex theory, the method is quite accurate in the range of conventional 

rotor thrust coefficients. However, with increasing thrust coefficient 

or increasing numbers of blades the Lock-Goldstein method becomes progres- 

sively optimistic as indicated in Reference 23. This result is due pri- 

marily to the inherent assumption of a constant helix angle and noncontrac- 

ting wake which does not adequately locate the position of the trailing 

vortex shed by a previous blade. In actuality the vortex from the pre- 

ceding blade may remain in the rotor tip path plane (Reference 23) and 

pass only slightly under the following blade, thereby causing localized 

changes in angle of attack and high power consumption. On the other hand 

a jet sheet such as generated by a circulation control rotor can have two 

favorable influences on the tip vortex: (1) it may dissipate the concen- 

trated vorticity and virtually eliminate the adverse tip effect (Refer- 

ence 2k)  and (2) it may force the vortex (which acts as a free streamline) 

to move downward from the tip path plane. Furthermore, the more ideal 

span load distribution (discussed subsequently) should significantly reduce 

the tip loading and concentrated vorticity. 
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Very little information is currently available on the induced 

velocity field of a circulation control rotor with which a suitable theory 

might be developed. However, one series of tests have been conducted (in 

Reference 25) with which an approximate correction factor may be developed.. 

Figure 2a shows the experimental rotor lift distribution of a twelve foot 

circulation control rotor {cjc =  0.283). The measured (pitot survey) 

induced velocity field immediately below the rotor i* shown in Figure 2b 

including the calculated induced velocity using Lock-Goldstein between 

O.lU £ X £ 0.95. From X = 0.95 to X = 1.00 (tip), it is assumed that the 

induced velocity decays linearly to zero tc match the experimental findings. 

The tip vortex impingement assumption effects the performance calculations 

by generating large angles of attack in that region which result in a 

significant increase in drag. At the same time any lift increment is 

excluded from the calculation. 

The tip approximation is used throughout the analysis at considerably 

lower values of cjc than that of Figure 2. It is therefore felt that the 

corrected Lock-Goldstein method is probably quite accurate for the range 

of C^Ja * 0.28. 

Using the assumptions described above the induced power is then 

calculated from: 

1.0 

'T 
NpRV,,3 

PI = 
J 
o 

x3C.(x)c(x) sin 0.(x) dx (3) 

C0RI0LIS POWER (PUMPING POWER) 

The radial airflow inside the duct induces a coriolis torque which 

must be added to the profile and induced torque. This torque can be 

de. ivs<*. as follows: 

The tangential acceleration (normal to span axis) of a fluid 

particle moving out the blade radius is: a = 2 Q x V. 

where Ö is the rotational velocity vector 

and V. is the velocity vector of a small particle of 

fluid in the duct in the rotating system. 
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^differential force acting on a small mass of fluid, dm, normal 
to n and Vd is therefore 

|<3F|= 2 n V. d 
•    I dm (h) 

the torque is 
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dQ = rdF (5) 

A change of variables is next made by noting 

Vd dm = pdAdVd to = Adr or in terns of initial mass flow rate, A    , 

(6) Vddm = r 
J 

ds dr 

This equation represents the mass flow rate of the air in the duct at 

any radial station and hence the coriolis power is given by 

COR OQ = 2 Nri" 

R       r 

I 'L*-J(*)*j 
^ D -J 

dr   (7) 

It may be seen that this power varies with the initial mass flow rate 

and the distribution of mass flux radially. In general, coriolis power 

amounts to less than five percent of the total power in hover. 

COMPRESSOR POWER AND DUCT LOSSES 

The compressor power requirement is computed from the isentropic 
relation: y-1 

pc IY -1) n.        (8) 

I 
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The unknowns in this equation are the mass flow rate m_,> and 

the total pressure, P . The determination of these two parameters 

involves a complex calculation of the losses in the ducting system. 

This calculation is based on the one-dimensional compressible flow 

analysis due to Shapiro. Various special cases of the analysis have 

been conducted in the literature (References 26 and 27). However, it is 

thought that the following equations represent the first complete 

formulation of the distributed mass efflux problem of the CCR. 

The duct flow is represented by a one-dimensional compressible flow 

model. Any deviations from this model due to coriolis accelerations in 

the plane of rotation or other effects (leading to possible secondary 

flows) are accounted for by the friction coefficient and recovery factor 

which are altered empirically in accord with the findings of several in- 

vestigators (notably Reference 26 which gives a Coriolis correction). 

The flow may be laminar, transitional or fully developed although for 

all but very small model rotors it would probably be fully turbulent. 

The analysis may be developed from first principles as given by 

Shapiro (Reference 27) and modified by Henry (Reference 28) for inclusion 

of the centrifugal compression terms. The distributed ejection as formu- 

lated by Shapiro is valid if it is assumed that the air leaves the duct 

with the same state properties as the duct air and if the coefficient of 

gas injection, y = -1.0. 

The following governing equation may then be derived from momentum, 

continuity and state equations for the variation of the internal duct 

Mach number with radius due to the mass efflux, friction, centrifugal 

compression, area change, temperature distribution and internal obstruc- 

tions : 

dM 
dr 

yM3 (1 + ^H8)   M (1 + ytf)  (1 + *~ M») 

 (1 -M»)  y + (1-M»)  
1 dm 
m" dr 

^M3 (1 + ^M8) 

l-iF 
f 
D [ g (c, 

M(l ♦!£*)» 

P 
Cv) J TT (1 #) 

tfi 
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M (1 + ^M3) 

(1 -M*T Ad   dr 

YM3  (l + ^M3) 

2 (1 - M8) 

M (1 + YM8)  (1 + 3^iM8) 

2 (l - M8) 

T 

TT   dr 

(9) 

1 dX 

* PM3 A      to 

2   <r   Ad 

To solve the equation independent expressions are needed for the 

variation of the slot height, duct internal area and internal obstructions 

and an auxiliary relation is required for the temperature variation. The 

temperature equation is derived from the energy equation and the Reynold's 

analogy to yield: 

T d T 
dr 

(Y-l) T^ »4 r + 2f (T _ T \ 
D  uw  W (10) 
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To find the wall temperature, T , a relationship between the flow total 

temperature, T_, and the heat transfer characteristics of the duct is 

also needed. This expression is: 

T T 
J* * i - k (1 - -Ä), where   0sks0.5 (u) 

A detailed calculation of k would depend on the thermal resistance of 

the blade material and on the convection cooling of the external surface. 

For the present study a value of k = 0.3 is taken as representative of 

current technology. As the effects of heat transfer are quite small 

for the relatively low temperature flows considered herein their repre- 

sentation is entirely sufficient. 

The duct flow equation is solved by a forward difference 

technique as follows: (1) The entry mass flow and duct Mach number are 
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estimated from the compressor pressure ratio and temperature. (2) Each 

term of Equation (9) is next estimated for a distance Ar down the duct, 

the Mach number at this station calculated and a new estimate made until 

a converged value is reached. (3) This process is repeated for up to l60 

duct stations finally yielding the duct Mach number at the end. (k)  For 

a closed end duct the Mach number must be zero so that if an excess exists 

the original entry estimate is reduced and the computation is repeated. 

(5) If the Mach number tends to zero before the end of the duct the original 

estimate is increased. Once the internal Mach number distribution is 

established the analysis computes the spanwise variations of duct pressure 

and blowing coefficient, C . 

A typical duct loss computation is shown in Figure 3 for the present 

rotor assuming no internal obstructions and an internal duct area equal to 

the airfoil cross section. Due to the highly optimistic result (large 

total pressure rise), and because a realistic internal blade geometry (spars, 

turning vanes, etc.) was not yet available, it was decided to simply use the 

conservative assumption of constant duct pressure for the present performance 

calculations. 

It should be noted, however, that these rather surprising results 

imply that a significant measure of control air can be provided simply 

by centrifugal pumping. This result may have important implications for 

autorotation or even an unaugmented air supply. 

PROFILE POWER 

The profile power is computed in the conventional manner, 

1.0 

PP = 

NpRV_ I C,(x)C(x) x3 cos 0 (x)dx 

where C.(x) is a function of the section thickness-chord ratio, camber, 
d 

angle of attack, blowing coefficient, slot height to trailing edge 

radius ratio, slot height to chord ratio find free-stream Mach number. 

The present analysis uses a cambered twenty percent thickness root 

section which tapers linearly to a synmetrical fifteen percent tip 
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section (Figure k).    The detailed airfoil data and conpressibility 

factors are given in Appendix A. 
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ROTOR GEOMETRY AND OPERATING CONDITIONS 

The rotor (Figure k)  is described completely by the following 

dimensionless variables which are inputs to the analysis 

X Radial location, unit at tip 

C/R(x) Local chord-rotor radius ratio 

ß(x) Twist, degrees 

6(x) Section camber 

t/c(x) Section thickness-chord ratio 

RTE/C(x) Local trailing edge radius-cho 
after slot exit 

w/c(x) Slot height-chord ratio 

N Number of blades 

For the present study the following characteristics 
were used: 

C/R(x) = 0.07 

P(x) = 0 

6(x) =  (0.05 - 0.05X) 

I t/C(x) =  (0.20 - 0.05X) 

! RTE/C(x) = (o.dk + 0.06J+X) 
1 

•j" 

W/C(x) = 0.001; 0.002 

*     * N = k 

0f 

1 
a 

'c 

= 0.082 

= 0.80 
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The range of operation«! variables investigated consisted 

of the following: 

0.0025 * C * 0.020 

0.51  * Mjjp * 0.91 

0.0  s p. ,/P . £ 1.8 
duct' atm 

0.0  £ 9 * 16.0° 

Sea level standard conditions were assumed. 

1 

I 
I 
I 
I 
I 
I 

I 11 

... Ti-^::,^S^-^-4*iP^^««^ 



-,'A -_,',% ,—          .111 » ..          I'        _  ~- . r. ■TWImrni™>i 

the C = 0.010 case. It may be noted that the induced power is generally- 

close to the ideal, differing by about six percent at the minimum total 

power point. The reason for this relatively efficient induced power 

requirement may be noted in Figures 7 and 8 where the radial loading and 

induced velocity distributions are shown. In general at the smaller 

collective pitch angles the distributions are close to the ideal illustra- 

ting that the circulation control rotor can achieve near optimum span 

loading with a constant slot height distribution (w/c = 0.001). 

A second important feature which can be noted in Figure 6 is that 

the contribution of the remaining power terms, C_ is approximately twenty 
E 

three percent. This is somewhat less than tha analogous profile power of 

a conventional rotor and is due primarily to the extremely low compressor 

power requirement (approximately four percent of total). Some further 
j 

insight into this somewhat surprising result may be gained from Figure 9 

where the primary duct flow variables are presented. Due to the high 
0 

lift augmentation, the required mass flow is extremely low, with duct 

pressures amounting to about 2 psig at the maximum efficiency point. 

EFFECT OF SLOT HEIGHT 
1 

Two constant blade slot height to chord ratios were examined in 

the study, w/C = 0.001, and 0.002. The larger slot height was preferable 

for the high speed cruise condition as it would permit the same momentum 

»' 

1 
i 
1 

RESULTS 

Three parameters were varied in the present study: collective 

pitch, slot height and tip Mach number. Each of these is discussed 

below in the context of optimum Figure of Merit. The results are then 

summarized in terms of the dimensional power loading and disc loading 

and compared with a conventional rotor. 1 

EFFECT OF COLLECTIVE PITCH 

Figure 5 shows the typical effect of varying collective pitch 

at constant values of rotor thrust coefficient. At a nominal design 

value of thrust coefficient (C = 0.010) a collective pitch setting cf a 

approximately nine degrees would yield the maximum hover efficiency. 

The breakdown of hover power components is shown in Figure 6 for 
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flux (C ) to be obtained at a lower compressor power. The experimental 

airoil data utilized is for w/C » 0.00125 and it can be shown (References 

13 and Ik)  that this value adequately represents the lift and drag charac- 

teristics for the two slot height ratios selected. A slight improvement 

in the section efficiency occurs at the larger slot height ratio due to 

a reduction of the compressor power. It is important to note that beyond 

the w/C = 0.002, the airfoil aerodynamic characteristics change signifi- 

cantly and require the use of a new momentum coefficient which properly 

accounts for larger slot height variations (Reference 13). 

The effect of slot height ratio is shown in Figure 10. The curves 

presented are the loci of maximum efficiency at each collective pitch 

setting. It may be seen that as anticipated from the two-dimensional 

characteristics the larger slot height ratio shows a slight increase in 

Figure of Merit. 

EFFECT OF TIP MACH NUMBER 

The effect of tip Mach number is shown in Figure 11. It may be 

noted that a favorable compressibility effect occurs for M   £ 0.70. 

At NL-p = 0.80 a gradual profile drag rise occurs, slight affecting the 

performance and at M_Tp = 0.90 a large degradation occurs and the rotor 

lift is limited to lower thrust coefficients. Figure of Merit is still 

quite good even at the high Mach numbers. This phenomena is due to several 

interrelated compressibility effects which are discussed in Reference 13. 

The primary effect however is the inherent ability of a circulation con- 

trol airfoil to obtain a higher critical Mach number than a conventional 

airfoil developing the same lift. 

The associated collective pitch variation curves for three values 

of tip Mach number are presented in Figure 12. 

EFFECT OF TIP MACH NUMBER AND DISC LOADING ON POWER LOADING 

A useful dimensional method for comparing rotors of equal solidity 

is the variation of power loading T/W,  with disc loading T/S. These 

parameters are defined in terms of the previous dimensionless variables 

as follows: 

13 
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T/S = K T    T 

550 Jz   FM 

VT 

i 

C 2 

T 

In Figure 13 the preceding results are replotted in terms of the above 

variables. For reference a conventional rotor blade of the same solidity 

and -5 degree twist is presented in Figure lk.    This rotor was designed 

for a high speed (300 - 350 knot) compound helicopter (Reference 28) and 

is therefore a representative comparison. 

It may be noted by reference to Figure lk  and the preceding figures 

that the circulation control rotor affords the aircraft designer a con- 

siderable latitude over the conventional rotor in the choice of hover 

tip speed, disc loading, and rotor solidity without incurring serious 

hover power penalties. It should be noted that the calculation does not 

include any air flow losses before the rotor head but does assume a com- 

pressor efficiency of eighty percent. 

CONCLUSIONS 

1. A refined method of hover analysis has been presented for the 

calculation of circulation control airfoil performance. This method is 

believed to yield good accuracy within the limits specified. 

2. A four-bladed, constant chord, untwisted circulation control 

rotor can achieve rotor Figures of Merit of 0.80 at thrust coefficients 

of 0.020. 

3. A positive blade collective pitch angle is desirable to 

achieve high efficiency in hover. For a given design thrust range a 

single collective angle is adequate. 

k.    Tip Mach number has a favorable influence on the hover 

efficiency up to 0.70. 
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5. The hover power loading characteristics of a high speed 

circulation control rotor are superior to a conventional high speed 

rotor in the range of practical disk loadings. 

Aviation and Surface Effects Department 
Naval Ship Research and Development Center 
Bethesda, Maryland 20034 
August 1971 
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APPENDIX A 

SECTION DATA 

The analysis employs experimental airfoil data for the root and 

tip sections and interpolates linearly in between. The root section is 

a twenty percent thickness ratio ellipse with five percent circular camber 

and a four percent circular trailing edge radius. The tip seecior is a 

fifteen percent symmetrical ellipse with an elliptical trailing edge. 

Figure k  shows these sections and Figures Al - A4 present the airfoil 

characteristics as used in the computerized format. The section data 

(lift and drag coefficient) is given in an incompressible form for a full 
angle of attack range. 

Limited data (Reference 10) was also available for determining 

compressibility effect. This information was put into the form of a com- 

pressibility correctic; factor, F, given as a function of the slot height 

to local trailing edge radius ratio (W/R.- = (w/c)/(R_/c)> *Jie momentum 

coefficient (C ) and free-stream Mach number. The development of this 
correction factor is given in Reference 13. 

The effect of compressibility on the lift at any given section is 
then determined as: C,       (M, cr, C , t/c, 6, W/R ) = FC 

compress.      ^ "u Incompress. 
(a, C , t/c, 6) where F is the ratio of compressible to incompressible 

lift coefficient and is functionally dependent on the free-stream Mach 

number (M), blowing coefficient (C ), and slot height-trailing edge 

radius ratio (w/R^). 

In this manner the effect on lift of varying the ratio of slot 

height to trailing edge radius between the root and tip may be determined 

and the approximate effect of compressibility on angle of attack, thick- 

ness and camber are also calculated. The lift compressibility factor F 

is shown in Figure A5a for the circular trailing edge and in Figure A5b 

for the elliptical trailing edge, it may be noted that a strong degradation 

of lift performance occurs in the circular case while a significant increase 
of lift occurs with the more elliptical case. 

The drag data is treated in a similar manner to the lift for the two 
W/R  values (Figure A6). TE 
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ROTOR GEOMETRY 
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Figure 1 - Hover Methodology 
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